We know that Mars was once much wetter than it is now, but the questions of when water formed and evaporated away are much more difficult to answer.
A new study now suggests that water was present on the Red Planet some 4.4 billion years ago, much earlier than previously thought.
That's based on an analysis of a meteorite named NWA 7533, picked up in the Sahara Desert and thought to have originated on Mars billions of years ago. The oxidation of certain minerals inside the meteorite hints at the presence of water.
The findings could push back the estimated date of water formation on Mars some 700 million years, from the 3.7-billion-years-ago timeframe that has been the general consensus up until now. The research could also offer up some insights into how planets form in the first place.
"I study minerals in Martian meteorites to understand how Mars formed and its crust and mantle evolved," says planetary scientist Takashi Mikouchi from the University of Tokyo in Japan.
"This is the first time I have investigated this particular meteorite, nicknamed 'Black Beauty' for its dark colour. Our samples of NWA 7533 were subjected to four different kinds of spectroscopic analysis, ways of detecting chemical fingerprints. The results led our team to draw some exciting conclusions."
Planetary scientists are keenly interested in the story of water on planets and on moons. One of the big unknowns is whether water gets added to a planetary body after it forms, through the impacts of asteroids and comets, or whether it occurs naturally during the planet formation process.
Ancient rocks like NWA 7533 can help scientists peer back in time and find out, as they record impact events on the planet they come from, and capture some of the mineral and chemical composition of the surface when they are formed.
In this case, it's the oxidation that's the tell-tale sign of water. With certain fragments inside NWA 7533 dated to 4.4 billion years ago, it's the oldest record we've got of Mars (which may be why a single gram of this meteorite can fetch as much as US$10,000).
"Igneous clasts, or fragmented rock, in the meteorite are formed from magma and are commonly caused by impacts and oxidation," says Mikouchi. "This oxidation could have occurred if there was water present on or in the Martian crust 4.4 billion years ago during an impact that melted part of the crust."
Such an early appearance suggests that water actually was around when Mars formed and that in turn plays into research into planetary formation in general. With water comes life, which is one reason scientists are so eager to track it down around the Universe. For comparison, we know that the earliest traces of life on Earth date to at least 3.5 billion years ago.
The close study of Mars continues as experts try and figure out when water was present and what form it might have taken. One recent study put forward the idea that both liquid water and surface ice could have existed on the Red Planet at the same time.
The team's findings also suggest that the chemical make-up of the Martian atmosphere at this time – including high levels of hydrogen – could have made the planet warm enough for water to melt and life to exist, even though the Sun would have been younger and fainter during this period.
"Our analysis also suggests such an impact would have released a lot of hydrogen, which would have contributed to planetary warming at a time when Mars already had a thick insulating atmosphere of carbon dioxide," says Mikouchi.
The research has been published in Science Advances.